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Abstract

By facilitating the collection and allalysis of records of

behavior, computer-based learning environments offer unique

opportunities for the analysis of learning and problem solving

processes. In this paper, partially automated techniques for process

analysis are applied in a study of the problem solving strategies of a

group of students learning LOGO.

The objectives of the paper are to develop strattly

specifications, to construct a model of the students' piogramming

process, and to illustrate the application of partially automated

process analysis. The software tools used in this study have as their

theoretical foundation the concept of problem solving as a goal-directed

search in problem spaces associated with a task. The tools consist of

programs for collecting, displaying, encoding, and dynamically

representing the students' problem solving in the LOGO environment. A

group of nine gifted students, ten to fourteen years of age, were

trained over a fifteen week period. Two tasks were administered, a

graphics task midway through the program, and a word-and-list task

towards the end of the program. The tools are ued to identify the

students' problem solving strategies in each of the tasks, and these

strategies are framed within the context of an agenda model of search

control. The strategies identified differed across tasks and across

subjects. According to this moCal, the students' strategies are a

function of specific task demands and the students' representations of

the problem, their knowledga of program design, and their knowledge-base

of specific methods for implementing their designs in code.

Key words and phrases: problem solving strategies, programming, LOGO,

and automated analysis.
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1. Introduction

In tAe field of education few would doubt that it is more

illuminating to look at the process a student goes through to achieve a

result than merely to look at the product of that process. Yet process

analysis is seen by many teachers and researchers as too time-consuming,

subjective, and unreliable to provide a basis for evaluation and

instruction and for academic research. However, computer-based learning

environments offer unique opportunities for overcoming the problems

associated with process analysis. The interactions of a student with a

computer can be automatically recorded by the computer, and programs can

be constructed to automate the coding and analysis of these records.

The study described in this paper takes advantage of the

opportunities for process analysis within computer-based environments by

focusing on LOGO programmir.g and analyzing the problem solving'

strategies employed by a group of young gifted students on two tasks

involving graphics and word-and-list processing. While young students'

LOGO programming has been extensively studied over the past decade and

more, the process analytic approach has not been employed to any great

extent in this research. The particular objective of this paper is to

illustrate how automated techniques can be used to model the programming

process; the more general objective is to illuztrate in part the

development and application of a process analytic paradigm of research

in a field in which it is particularly apt but largely ignored. As a

preliminary to the discussion of the study and its results, some of the

paradigms that have been applied within the literature on programming

are outlined and the results they have yielded examined.

2. Paradigms applied to the study of programming

A variety of paradigms has been applied to the study of

programming (Curtis, 1988); three of these are particularly relevant to

this discussion. The effects paradigm examines the issue of the
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transfer of skills from the domain of programming; this has been the

predominate paradigm in the study of LOGO programming within the

educational research community. The expert-novice paradigm has been

widely applied in studies of adult (university-age and professional)

programmers to reveal the nature of programming knowledge by focusing on

differences that the acquisition of knowledge makes. The third

pal.adigm, the process analytic paradigm, employs process records,

primarily recordings of verbalizations, to analyze the strategies

employed by programmers of various levels of skill. In this section,

the various paradigms and their application to the study of programming

are examined.

2.1. The application of the effects paradigm

In much of the research on LOGO programming, young students are

pre-tested and post-tested with measures thought to have some

relationship to the kinds of skills exhibited in programming (e.g.,

geometric skills, problem-solving, or recipe reading), and the LOGO

trained groups are matched with controls (e.g., students receiving a

regular academic program, training on CAI software, or computer literacy

instruction).

Transfer of other than specific skills is notoriously difficult to

demonstrate (Perkins & Saloman, 1989; Saloman & Perkins, 1989), and

attempts to demonstrate the transfer of skills acquired through LOGO

piogramming to other domains have been true to form. The use of this

paradigm has produced, at best, mixed and sometimes contradictory

reaults, and negative judgements have increasingly been made on the

justifiability of teaching programming to young students (Khayrallah &

Meiraker, 1987; Krasner & Mitterer, 1984; Michayluk, 19861. However,

rather than abandoning the teaching of programming in schools, it may be

more appropriate to look at how the paradigm has been applied in mach of

this research.

What the decade-long investigation of this issue has accomplished
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is the recognition that to achieve transfer some appreciable level of

programming skills must first be developed (Kinzer, Littlefield,

Delclos, & Bransford, 1985; Klahr & Carver, 1988) and that how

programming is taught (e.g., discovery, guided discovery, mediated

learning, structured learning) makes a substantial difference to both

learning and transfer (Delclos & Kulewic, 1985; Delclos, Littlefield, &

Bransford, 1985; Emihovich & Miller, 1986; Kull, 1986; Lehrer, 1986;

Lehrer & Smith, 1986; Leron, 1985: Pea and Kurland, 1984). When

training is based on a solid analysis of the activity cf programming and

sensitive measures of learning and transfer are used, transfer of skills

acquired through programming can be achieved (Carver and Klahr, 1986;

Klahr & Carver, 1988).

2.2. The application of the expert-novice paradigm

One of the major deficiencies of the LOGO debate within the

educational community is the relative lack of awareness of the

literature that has been generated within the larger research community

on the nature of programming and the programming process. Much of this

research has been conducted using the expert-novice paradigm in which

the perfozmance of groups of novices and experts is compared on

programming and related tasks.

A number of studies (Adelson 1981, 1984b; Bateson, Alexander, &

Murphy, 1987; McKeithen, Reitman, Rueter, & Hirtle, 1981; Shneiderman,

1976; Shneiderman, 1977; Shneiderman & Mayer, 1979) have looked at

differences between novices and experts' recall for programs and,

consistent with findings in other domains, have found that experts are

no better than novices in recalling programming material that lacks

inherent meaning (e.g., randomly chosen program fragments), but are

better at recalling meaningful material (e.g., fragments from a

functional program). Experts' superior recall is attributed to their

ability to chunk information and organize it in relation to the

programming knowledge that they have available to them. With
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experience, this information is hierarchically organized into larger

chunks which are indexed to facilitate efficient access (Bateson et al,

1987).

This organization of knowledge allows experts to form higher level

representations than novices. Whereas novices form concrete

representations based on surface features of the language ("syntax") and

the specifics of how a programme works (Adelson, 1981, 1984b) and tend

to formulate solutions for specific instances of a problem based on its

literal features (Hoc, 1977; Weiser & Shertz, 1983), experts form

representations which have to do with the meaning of statements within a

programming language ("semantics"), with the function of these

statements as parts of programs, and with the generalities of what a

program does (Adelson, 1981, 1984b).

The nature of the functional units of domair.specific knowledge in

programming has been investigated in a number of studies (Davies, 1990a,

1990b; Gilmore & Green, 1988; Rist, 1986; Soloway & Ehrlich, 1984;

Soloway, Ehrlich, Boner, & Greenspan, 1982). Sheil (1981), relying on

the concept of schemata, has characterized programming knowledge as

a collection of units ... each of which is organized as a
program fragment, abstracted to some degree, together with a
set of propositions about its behavior and rules for
combining it with others, and indexed in terms of the
problem classes for which it is appropriate. (p. 118)

The elements of these schemata that have been focused upon are:

(1) the programming plan structures or abstract program fragments which

represent stereotypical action sequences in programming (Soloway &

Ehlich, 1984; Dailies, 1990b); (2) rules of programming discourse which

specify conventions in programming and govern the composition of plan

structures into programs (Soloway & Ehrlick, 1984); and (3) the

selection rules which govern the implementation of programming plan

structures in appropriate situations (Davies, 1990b). This research

(Davies, 1990b) suggests that only novice programmers lack plan

structures, but that what develops from intermediate to expert levels is

the use and deployment of appropriat9 selection rules and the correct



Ilse of discourse rules.

2.3. The application of the process analytic paradigm

These concepts of knowledge organization, level of representation,

and functional units of domain-specific knowledge appear as well in

studies of programming using the process analytic paradigm. Since this

is probably the more unfamiliar of the three paradigms and so much of

the later discussion in the paper depends on a familiarity with it, the

discuasion needs to be somewhat extended.

2.3.1. The paradigm itself

In this paradigm, the objective is to construct process models

which explain the behavior studied. Ideally, these are computational

models which are "sufficient" in the sense that they generate the

behavior which is to be explained, subject, of course, to known

constraints of human psy,hology. Strategies take a central role in

models of problem solving processes; they are the "programs" which

generate a path through a problem to its solution and determine the

sequences of processes which occur.

The empirical basis for the construction and testing of these

models consists of records of subjects carrying out the process which is

modeled. These records can be recordings of such things as step-by-step

moves, response times, eye movements, and verbalizations, although

verbalizations are generally employed. Protocol analysis, which

involves recording and analyzing subjects' verbalizations during problem

solving, is the most widely applied method for collecting and analyzing

process data (Ericsson & Simon, 1984; Newell & Simon, 1972). In this

method, subjects are asked to think aloud during problem solving and

5
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their verLalizations are recorded', transcribed, encoded, and then

subjected to various forms of analysis. Figure 1 depicts the method in

its traditional form.

One way of developing a coding vocabulary is through a task

analysis which identifies the "problem spaces" for a task (Newell and

Simon, 1972). This approach to task analysis assumes that the structure

of the task environment determines the ways In which subjects represent

a problem and that those representations are in the form of problem

spaces (Simon, 1978).

A problem space is defined as a set of symbolic structures, the

states of the space, and a set of operators for transtorming one state

into another; sequences of state-operator pairs define paths for moving

through the'space. A problem within a problem space is defined by an

initial state, a goal state and a set o7 path constraints; some probiems

involve more than one problem space (Kant & Newell, 1984; Simon & Lea,

1976). Within this framework, the problem solving process is a goal-

directed search which begins from an initial state constituted by a

given configuration of a problem space and, through the application of

operators to statas, transforms one state into another and proceeds

towards a goal state along a path subject to specific constraints and

under the guidance of search control knowledge (Newell, 1980).

Once a vocabulary of "objects and relations" (Ericsson a Simon,

1984) has been developed from such a task analysis and the records are

encoded, the behavior can be represented in an abstract form. One form

of behavioral representation is a problem behavior graph which plots the

subject's ,ath through a problem space as a sequence of state-operator

pairs in which operators are applied to states to produce new states.'

'If the problem solving involves observable actions, these actions

are usually recorded as well and represented in the transcript as

referents for the verbalizations.

'The graph lisually takes the form of a kind of flow diagram
consisting of boxes, representing states of the problem space, and

arrows representing the application of operators to those states to
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A problem behav!or graph can be used in two ways with respect to a

process model. In constructing a model, rules can be abstracted from

the problem behavior graph's representation of the conjunctic.is of

states and operators in a stwject's solution path to account for the

subject's successive steps in solving the problem. These rules can in

turn _e used to describe the subjects' strategy and to construct a

computational model capable of reproducing the subject's behavior

(Ohlsson & Langley, 1985). If, oil the other hand, the process model has

been developed independently, problem behavior graphs can be used to

test the model by matching the graphs to the "trace" generated by the

process models (Newell & Simon, 1972).

Protocol analysis as a paradigm of research is not without its

limitations; however, before examining them, some results from studies

of the programming process which have employed variants of this approach

need to be discussed.

2.3.2. Themes in process analytic research on programming

Clear themes have emerged from the application of this paradigm to

the study of the programming process. Some of these themes have to do

with contrasts in how strategies direct the process, with ways in which

knowledge is developed in relationship to two problem spaces, and with

the nature of programming knowledge.

The programming process can be characterized in terms of a design

phase and an implementation phase, although these lses are seldom

distinct in actual practice. In the design phase an verall

representation of the problem is developed from the task specifications.

This may amount to a sketchy solution or a well-articulated algorithm.

In the implementation phase, the overall representation is translated

in'op code, tested, and debugged.

Consistent with expectations based on research on the different

produce new states.
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types of knowledge available to experts and novices, research on the

programming process (Adelson & Soloway, 1985; Jeffries, Turner, Polson,

and Atwood, 1981) suggests that, because experts are more.able to

represent problems in the abstract th4,1 are novices, they can develop an

overall solution to a rIoblem by decomposing it into a hierarchy of

subproblems; because they have a rich repertoire of previously developed

representations, they can move from one level of the design solution to

the next lower level by drawing on available knowledge. Even when

appropriate knowledge is not available, experts persist in this mode of

operating at one level of abstraction at a time (Adelson & Soloway,

1985). Novices, on the other hand, are not as able to develop an

overall representation of the problem, and, while they may attempt to

decompose the problem into subproblems, they tend to work on one aspect

of the decomposed problem at a time and expand it into a detailed local

solution (Jeffries et al, 1981).

According to this research, the conti.ast between experts and

novices is in terms of the experts' use of strategies which drive the

solucion process in a top-down and breadth-first direction on a

decompositional search tree as opposed to the novices' use of strategies

which drive the solution in a bottom-up and depth-first direction.

However, other studies (Fisher, 1986, 1988; Risf ' ')6, 1989) have

qualified this view. These studies suggest that novices and experts

proceed in a more flexible manner depending upon the availability of

knowledge and the requirements of the problem. Novices successively

refine solutions to a problem when they can easily retrieve appropriate

programming knowledge, but when they cannot, they tend to focus on a

local solution to a problem and expand it (Rist, 1986, 1989).

Flexibility is shown by advanced programmers as well, and they may adopt

strategies which drive the process in a variety of different directions

at different points in the solution process depending upon the

requirements of the problem (Fisher, 1986, 1988).

Protocol analysis studies suggest that programming knowledge can

be extended and elaborated through simulation and experimentation

8
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(Adelson & Soloway, 1985) and in relationship to more than one problem

space (Dunbar & Klahr, 1989; Kant & Newell, 1984; Klahr & Dunbar, 1988).

In skilled design, mental simulation and search in an hypothesis space,

a space of partially articulated solution models, are done as a check on

the evolution of the design as it is refined. Feedback through trials

in an experimental space, such as running a program on a computer

system, may also be used; trials of this nature tend to be used in

situations in which mental simulation alone is not sufficient and more

specific information is necessary to develop a solution. Strategic

approaches can be differentiated on the basis of the space which is

searched with some subjects preferring search in one space rather than

another. Mental simulation and search in an hypothesis space tend to be

linked with higher levels of skill and the availability of knowledge,

and hence with retrieval and expansion of previously developed

knowledge, whereas test-case execution and search in an experimental

space tend to be linked with less skilled approaches and lack of

knowledge, and hence with the development and expansion of new

representations.

Research focused on the implementation process suggests that it

has many characteristics in common with the design process. Similar

strategic approaches are found in both processes; the predominant view

in the literature on implementation, as in design, is that skilled

implementation is a largely top-down, breadth-first process. Just as

skilled planning requires keeping the overall representation of the

problem in mind as the design evolves, skilled implementation involves

being able to keep the program structule in mind while dealing with the

detail of the program (Ves3ey, 1985, 1986). As in the design process,

the overall representation of the program provides a context for the

development and deployment of functional units of knowledge. These

units of knowledge allow the programmer to map the evolved plan into the

code of a specific language (Brooks, 1977), to evaluate and change code

before it is executed (Gray & Anderson, 1987), and to seek clues to bugs

in written code and to evaluate hypotheses when they are tested (Gould,

9
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1975).

2.3.3. Limitations of the existing paradigm

Most of the models which have emerged in research on the

programming process are either in the form of step-by-step descriptions

of the programming process (Adelson & Soloway, 1985; Kant & Newell,

1984; Gray & Anderson, 1987) or flow-charts or "process hierarchy"

models (Carver, 1987; Dunbar & Klahr, 1989; Fisher, 1986, 1988; Gould,

1977; Klahr & Carver, 1988; Klahr & Dunbar, 1988; Vessey, 1986, 1988).

Only one effective computational model has been developed (Brooks,

1977), and that model is based on one subject writing 46 lines of code.

There are a number of reasons for the lack of effective

cunputational models in the field, most having to do with the

difficulties of following through with the paradigm. Some of these

difficulties are related to the tremendous costs in terms of time and

resources associated with collecting, transcribing, and coding

verbalizations. As a result of these costs, the number of subjects in

these studies is severely restricted; in the process analytic research

surveyed above, none involved more than 20 subjects, and most had fewer

than 10. The use of single subjects and small groups is typical of

research within this paradigm, and there are plausible theoretical

justifications for this (see Newell & Simon, 1972); however, results

from the application of this approach are likely to be viewed within the

larger research community as restricted ir their generalizability.

Furthermore, because of the intensity of the data collection method,

even one record can compose a huge data set; not only are the costs high

in collecting and analyzing such records, but there are great risks to

reliability in dealing with that amount of data and making inferences

from it. Each inference that is made from the record of transcribed

utterances introduces an uncontrolled element of intelligence and care

(Waterman & Newell, 1972). Finding consistent patterns in the data can

be extremely difficult (Fisher, 1988), and often several passes through

10
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the record will be necessay to ensure that the coding has been done

consistently.

Reliability and generalizability are the Achilles' heels of

protocol analysis. One way of addressing these weaknesses is to

automate as much as possible of the data collection and analysis tasks,

the idea being that, with some degree of automatization of the encoding

and analysis, protocol analysis will be easier, faster, and more

reliable, and more subjects can be used. The prospect is held out by

automatization is that the reliability and generalizability of the

results of the analysis will be greater and the construction and testing

of computational models will be facilitated.

Two approaches to automating protocol analysis as it relates to

the programming process can be distinguished. One approach has been to

develop systems to provide automated assistance for the coding of verbal

protocols and for data analysis of the coded protocols (Fisher, 1988;

Sanderson, James, and Seider, 1989; James, Sanderson, & Seider, 1990).

Another approach is to develop more fully automated systems which focus

on non-verbal trace records which can be collected as the task is

performed and analyzed using pre-determined encoding schemes (Redmond &

Gasen, 1988, 1989).

There are clearly trade-offs in using one approach rather than

another. On the one hand, the more automated a system is the more

reliable it is likely to be and the easier it is to apply to larger

numbers of subjects; on these grounds, automated recordings of

interactions on a computer are preferable to verbalizations as the focus

of analysis. On the other hand, verbalizations are undoubtedly a richer

source of information about cognitive processes. Furthermore, while

building intelligence into a system can eliminate possible sources of

unreliability, this can itself be a costly process and may restrict the

sensitivity of the analysis.

While approaches such as these hold out promise for strengthening

the paradigm, they are limited in their present state of realization.

For instance, the systems developed so far to analyze the programming

11
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process do not generate full-bodied behavioral representations in the

form of problem behavior graphs, nor do they do cognitive modeling.

Automated process analysis systems with these potentials have been

developed for domains stich as mathematics (Brown & Burton, 1978;

Kowalski & VanLehn, 1988; Ohlsson & Langley, 1985; VanLehn & Garlick,

1987) but not for the domain of programming.

3. The approach in this study

The study described in this paper involves the use of automated

tools for the collection, coding, and analysis of records of the

programming process. The approach used is a form of partially

automated process analysis. It is distinct from traditional protocol

analysis in that it focuses on non-verbal trace records rather than

verbalization records'. It relies on a predetermined coding scheme and

transforms the coded records into goal-based problem behavior graphs

from which strategy specifications can be derived. Two basic

assumptions are made for this analysis:

1) that a correspondence exists between the thought processes of

programmers and the code they generate, and

2) that the appearance of new code and changes to code from one

point in time to the next are significant and measurable points in the

programmer's problem solving (Redmond & Gasen, 1988, 1989).

The "system" for collecting and analyzing the records consists of

a set of tools in the form of programs written in LOGO by the author.

These tools collect, display, and code the records and assist in the

development of behavioral representations in the form of problem

behavior graphs. No attempt has been made here to construct an

effective computational model; rather than giving detailed sets of rules

'Verbalizations during performance of the tasks in this study were
recorded and transcribed; however, these verbalizations are merely used

for clarification of the analysis.

12



to specify strategies (a "production system"), the model which is

developed specifies types of strategies and the search control regime

within which they operate. This means that the sense of sufficiency

that is claimed for the model is relatively weak (although no more so

than the majority of studies in the area). Furthermore, the records

used to develop the model are the ones for which it is designed to

account, so that the model cannot be claimed to be generalizable beyond

the records analyzed'. This paper, then, is a report of the partial

realization of the goal of automating process analysis and a step on the

way to developing a method for studying processes which is both reliable

and generalizable.

In the sections which follow, the specifics of the study are

discussed, a theoretical basis for the software tools and a preliminary

formulation of the model are given, and the results from the application

of the tools to the subjects' performance on the two tasks are analyzed.

4. Subjects, training, and tasks

Nine students, ten to fourteen, who had been identified as gifted

according to the criteria of their school board and who had had previous

programming experience, were given instruction on LOGO programming on a

two hours per week basis for fifteen weeks. These students were chosen

because it was felt that they would be highly motivated and would be

able to acquire the relatively large amount of knowledge required in the

time that was available. The instructional approach varied according to

the need for mastery of content and the individual needs of the

students. The approach can best be described as eclectic and included

discovery learning, mediated learning (see McAllister, 1985), and

structured lessons.

'The model as it is presented here is to be evaluated against an
independent set of records in an extension of this study which is in

progress.

13
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Two tasks were chosen as the focus of the study; the first was

administered midway through the program and covered graphics

programming, the second was administered at the end of the program and

covered word-and-list and interactive game programming. (The actual

tasks and the circumstances of their administration are detailed below.)

5. The tools and their theoretical foundation

Three sets of software tools are involved in the analysis of the

subject's performance on the two programming tasks: (1) a "record

generator" which consists of programs for recording and displaying the

records, (2) an "encoder" which consists of a program which displays the

records segmented into units of analysis and identifies changes from one

version et a procedure to the next, and (3) a "problem behavior graph

generator" which consists of programs which assist in the development of

a problem behavior graph from a coded record. The theoretical

foundation for these tools is derived from an analysis of certain

invariants of the LOGO programming environment (specifically, the IBM

LOGO used in this study) in terms of two problem spaces.

LOGO is an interpreted language and highly interactive.

Programming in LOGO involves writing procedures; within this

environment, procedures are developed in either a define mode or an edit

mode, and instructions are carried out in an immediate mode.

Programming in this environmont can be conceptualized as taking place as

a search in two basic problem spaces, a primary problem space (the

"program space"), which is linked with the define and edit modes in

which procedures are developed, and a secondary space (the "trial

space"), which is linked with the immecliate mode in which

experimentation, testing, and debugging takes place. Search in these

two spaces involves going back and forth between them-- writing

procedures, trying them out, perhaps seeing what some specific

instructions will do, and using the feedback that the computer gives to

make changes to the procedures. (Figure 2 is a broad characterization
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of the two problem spaces in the LOGO environment.)

The record generator consists of a recording program and a

displaying program (see Figure 3). The recording program constructs a

record which consists of "snapshots" of procedures in the editor when it

is exited, the definition of a procedure when it is completed in define

mode, and the set of instructions entered in immediate mode when they

are invoked (with a carriage return)5. The record that results from

the use of this program during a programming session is a time-stamped

series of these snapshots in the form of lists. The displaying program

can display a record either in print or on the screen or it can replay

the record so that what was occurring on the system at the points at

which the snapshots were taken can be observed.

<Insert Figure 3 about here>

There are clear referents for the states and operators of the

problem spaces in the record'. The snapshots of the define and edit

modes can be taken to represent states of the program space and the

snapshots of the immediate mode to represent states of the trial space.

Operators are evident in overt actions within the programming

environment. In the LOGO implementation used for this study, IBM LOGO

(IBM, 1980), the variety of types of these actions is limited: within

the define mode, procedures can only be defined one at a time and

instructions can only be appended; within the edit mode, it is possible

to work on several procedures, but the only editing actions are

appending, inserting, and deleting instructions; and within the

immediate mode, it is possible only to invoke instructions and, in the

case of an interactive program, make inputs to the keyboard.

r'Although errors always occur within the immediate mode, the record
genelator records the initiating action and the error message as a

separate category.

'States and operators in a problem space are "mental constructs"
(Newell, 1980), but when a program is developed on a computer, the
symbolic states may designate states of the device and the operators may
lead to actions on the device (Newell, 1980; Newell & Simon, 1976).
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Accordingly, the actions of defining, appending, inserting, and deleting

evident in the record within the define and edit modes represent types

of operators within the program space, and the actions of invoking

instructions and making inputs to the keyboard within the immediate mode

represent types of operators within the trial space.

The encoder (see Figure 4) is used to identify changes to the

states of the program space and the types of operators used to affect

these changes. For its analysis it takes as its basic unit an

instruction, which is defined as a LOGO primitive or a procedure and

whatever inputs it may have. The program compares the present

formulation of a procedure with its last formulation on a unit by unit

basis, and identifies the changes made and the types of operators used.

The output of this program, combined with a classification of the types

of operators used in the trial space, supplies a coded record of the

states visited and operators used in the subject's search through the

two problem spaces associated with a task.

<Insert Figure 4 about here>

The path of a subject through a task consists of this sequence of

states and operators evident in the coded record. A I_Lot of the path of

the subject through the problem spaces can be made using a problem

behavior graph. The particular type of problem behaviour graph adopted

for this study is goal-based and groups operators according to goals and

plots the subject's path in terms of its sequential goal structure.

The problem behavior graph generator (see Figure 5; see Appendix A

for a key to interpreting the graph) automates the plotting of the

problem behavior graph. At its present stage of implementation, there

are two steps. An analysis program generates a file in the form of a

series of schematic lists. These lists contain information &bout what

occurred in each line of the record, and there are open slots for the

operators and the goals. Working from a coded record, the researcher

uses domain knowledge concerning the effects of the operators and

16



knowledge of the intentions of the subject' to insert the appropriate

goals and operators in the open slots. This file is used as input to a

program which displays the operators in terms of their goal structure,

and this is the problem behavior graph.

<Insert Figure 5 about here>

This type of problem behavior graph simplifies and reduces the

data, while, at the same time, it provides potentially informative

hypotheses about the cognitive processes which occurred. Specifically,

it represents the intentions of the subject and the means that were

employed to realize those intentions. To extract the implications of

these graphs, a preliminary model of the programming process must be

formulated.

6. A preliminary formulation of the model

The model of the programming process formulated here is based on

the idea that there is a fixed cycle within the search process and that,

within this cycle, there is an underlying control mechanism for

scheduling goals. That control mechanism can be thought of according to

the metaphor of an agenda (VanLehn & Garlick, 1987).

The idea is that the programmer is given the specifications for a

program embodied in the task instructions; this is a kind of imposed

agenda, but it is on the basis of it that the programmer draws upon a

knowledge base to form an overall representation of the problem. In

representing the prcblem, the programmer seeks to decompose it into more

easily manageable parts; these are the "items on the agenda" and become

subgoals of the task. However, this representation will change

'Knowing the intentions of the subject is relatively simple since
the subjects were working from a precise list of specifications for the

task. It is also possible to work backward in the record from what was

actually achieved to hypothesize what the programmer's intentions were,

and, since there is a verbal record, it is possible to consult it to see

what the subject had to say at the time.

17
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throughout the programming process, and with these changes, the agenda

will have to be updated. In this way, the agenda becomes an ordering of

the active goals of the problem solver.

Human-computer interactions are frequently characterized in terms

of a control cycle' consisting of

1) selecting a goal and deciding to act on it,

2) selecting an operator and executing the operator,

3) perceiving and interpreting the system state that results,

4) comparing the system state with the set of goals for the task,

5) and completing the cycle by selecting a new goal

(Newell, 1980; Norman, 1986).

This is essentially what occurs within the programming process, as

well (see Figure 6). The scheduling of goals is a strategic selection

from the agenda which is based on a comparison of the current state of

the agenda and the current state of the problem. A goal is selected and

the decision is made to act on it, and operators are selected and

executed by overt actions on the system. These actions change the

system, which in turn changes the state of a problem space. A

comparison of the agenda with the state of the problem changes the

programmer's representation of the problem and the agenda is updated.

At this point, a new cycle may begin or the cycle may be terminated if

the agenda has been completed or the problem abandoned.

<Insert figure 6 about here>

Methods, which describe procedures for accomplishing goals, link

goals and operators (Card, Moran, & Newell, 1983) and can be cast in

terms of conditional sequences of states, goals, and operators (e.g.,

"if the state of the problem is x and the state to be achieved is y, do

"Frequently, the idea of a goal-stack is used to describe the

ordering and scheduling of goals. However, there is a lot of rigidity

to a last-in, first-out goal-stack, and it is not a particularly helpful

idea in describing semantically rich tasks like programming.
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z")'. A programmer may have available as stored knowledge a set of

possible methods for accomplishing a goal; in this situation, the

programmer must merely select which method is preferable and apply it.

On the other hand, methDds for accompiishing a given goal may not be

available, and the programmer must develop a method for accomplishing

that goal; even though methods may not exist for accomplishing the

original goal, the programmer may still have methods (e.g., search

procedures) available for finding an appropriate method to ...1..;omp1ish

it.

The problem solving strategies which control the programming

process can be described in terms of the particular way in which goals

are scheduled and selected and in terms of the specific methods selected

and employed to accomplish these goals. In the development of a problem

solving strategy, the programmer's knowledge is drawn upon to determine

the overall representation and decomposition of the problem as embodied

in the agenda and to provide methods for carrying out goals or for

finding the appropriate methods for carrying out.goals.

This sketch of a model can be used as a framework for

understanding the results obtained from the application of the tools to

the two programming tasks. Through an examination of these results, the

nature of the strategies can be elucidated and the model filled-out to

provide an interpretation of the students' programming.

7. Results

In this section, the results of the application of these tools to

the two programming tasks are examined. The two tasks are discussed

separately; the format foi this discussion involves a review of the

training leading up to the task and the circumstances of its

'The concept of methods employed here borrows much from the concept
of programming plans or schemata as discussed in the literature (see

above), but it is a more generic concept.
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administration and an examination of the programs that the students

developed and the strategies that they used to develop them.

7.1. The first task: House-Playhouse

Prior to the administration of the first task, the students had

spent eight weeks working on graphic programming and were generally

proficient with navigating the screen and drawing simple objects. In

the weeks immediately preceding the test, the students had been taught

how to make basic shapes (e.g., square, triangle, and any sided polygon)

using constants and variables, and a test was administered in class on

the material that had been covered. The results from the test were

reviewed with the group as a whole, and individual tuition on this

material was given to any of the students according to their needs as

identified in the test.

The House-Playhouse task required the students to draw a house and

a playhouse one quarter the size of the house. The students were given

a detailed set of specifications for the figures (see Appendix B) and 90

minutes to complete the task.

The task was designori to be done by the students with little or no

involvement by the researcner. The majority of the students required

little or no help to continue working on the task productively, so the

records of their sessions are reliable indications of their independent

levels of functioning at the time of the administration of the task.

7.1.1. The programs

Figure 7 shows the output of the programs that the students

produced; the drawings are ordered according to the number of components

of the task instructions that were implemented. Table 1 shows the

students ranked from left to right according to the number of components

they successfully implemented. The components are ranked from top to

bottom according to the number of programs in which they were

20

2 0



successfully implemented. In general, two students, S1 and S3,

programmed substantially more of the components than the others, while

two others, S5 and S9, programmed substantially fewer. The frequency

with which a given component was programmed probably reflects such

factors es the order in which it was mentioned in the task instructions,

the importance that the students attached to accomplishing it, and the

relative ease with which it could be programmed.

<Insert Figure 7 about here>

<Insert Table 1 about here>

Tree diagrams can be used to exhibit much of the structure of the

final programs. The program PROCTREE, which is included on the IBM LOGO

disk, was used on each of the subjects' final programs, and the

resulting procedural structures were abstracted to derive the diagrams

shown in Figure 8. The dashes represent procedure names and the

indentations show the layers and subprocedural relationships. (The

number of lines of dashes do not necessarily represent the actual number

of predural calls in any specific program.)

<Insert Figure 8 about here>

Four different procedural structures are illustrated: simple

decompositional structures with two layers of procedures, single

procedures, chained procedures which consist of one procedure having as

its last line a call to a seccnd procedure, and two layer

decompositional structures with chained procedures. A structural

feature not shown in these diagrams is the use of REPEAT structures.

Most of the students (S2 was the exception) used REPEAT at some point in

their programs, usually to draw such shapes as squares, windows,

rectangles, stairs, pickets and so forth.

7.1.2. The strategies

An analysis of the protocols of the subjects indicates that they

used a similar approach in dealing with the task s a whole, but that

different strategies were used to program the main components of the

21

2 7



task. Essentially what they all did in carrying out the task was to

group components of the problem together, establish a subgoal based on

the group and then implement it before going on to program the next

group of components. In this manner they slowly expanded their programs

so that all the components were coded. However, in programming these

components they did use a variety of different strategies which are the

focus of this analysis.

To make the strategy analysis concrete, the discussion refers to

specific examples. The examples show the three basic component-based

strategies that the students used and some of the strategies which are

subsidiary to them". Each of the strategies is described in terms of

essential characteristics. The main strategies are characterised in

terms of how the goal of programming the component is decomposed and how

the code is developed in relationship to the two problem spaces. The

subsidiary strategies, which occur within the context of the component-

based strategies, are characterized as ways in which the trial space is

used to find methods to implement goals. The strategies are compared in

terms of the way in which the problem is represented and knowledge is

deployed and develk ,ed, in terms of their relative cognitive advantages

and disadvantages, and in terms of their relationship to the program

structures that were evolved in the course of the sessions.

The first of the component-based strategies, the "incremental"

strategy, is a highly linear, experimental strategy in which the

Programmer approaches achieving the goal in small bits and relies

heavily upon feedback from the trial space. This strategy has the

following characteristics:

1) Components of the problem are coded in the program space

one at a time, a bit at a time;

2) once a bit of the component is coded, it is tested in

'This is not meant to be an exhaustive catalogue of all possible

strategies but it does represent the strategies that this group of

students employed most frequently.
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che trial space;

3) the feedback from the trial space is used to refine and

debug the bit of code; and

4) method-finding is based primarily in the trial space.

<insert Figure 9 about here>

The student in this example used a procedure to carry out a search

in the trial space. While he may have been able to retrieve a method

for fulfilling a goal, it is more likely that he simply coded

provisionally and used the trial space for feedback on whether he was

correct or not. This is an example of the subsidiary strategy of

11 reactive debugging" which is used as a means of finding an appropriate

method for fulfilling a goal. Its essential characteristics are:

1) A bit of a component of a task is coded provisionally in

the program space and then tested in the trial space; and

2) the feedback from the trial space is used to refine and

debug the hit of code.

In another form of the incremental strategy (see Figure 10), the

programmer uses the trial space in an anticipatory fashion to gather

information about the effects of instructions and subsequently the

successful in ;ructions are incorporated into a procedure which can be

cested. This is an example :f the subsidiary strategy of "anticipatory

search." Its essential characteristics are:

1) Information is gathered about successful instructions by

experimentation in the trial space; and

2) these instructions are then reproduced in the program space.

<Insert Figure 10 about here>

The third example (Figure 11) illustrates another strategy, the

"refinement strategy." In this strategy a component-based goal is

established and an attempt is made to implement it completely and fully

within the program space before testing the procedure. The refinement

strategy involves the following characteristics:

1) A component is selected for coding and it is comple'...ely

coded in the program space before any testing takes place;
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2) the code is tested in the trial space and the feedback

is used to make alterations in the existing code;

3) the new code is tested and refined until the component

is successfully implemented; and

4) method-finding may occur in the trial space prior to

initial coding or entirely within the program space, while

refinement can take place in both the trial space and the

program space.

<Insert Figure 11 about here>

Another type of search strategy is illustrated in this example.

At two points the (lines 7 to 14 and lines 17 to 21) the subject moved

the turtle on the screen to measure distances and used the information

gathered to make alterations to the procedure under construction. This

illustrates a subsidiary, method-finding strategy of "inferential

search," the essential characteristics of which are:

1) Information is gathered by experimentation in the trial

space; and

2) this information is used to make inferences which are

used to code in the program space.

The fourth example (see Figure 12) illustrates a "modular

strategy." It involves a decomposition of goals and uses procedures or

other structures as modules or chunks that can be separately tested and

refined, and combined into wholes. This modular strategy has the

following characteristics:

1) A component is analyzed into two or more subcomponents;

2) each of these subcomponents is coded in the program space;

3) these subcomponents are integrated into a whole in the

form of a procedure;

4) the subcomponents may be tested singly or tested as

parts of the whole;

5) the feedback from the tests are used to refine and debug

the subcomponents and the whole; and

6)_ method-finding takes.place both in.the program space,and

24

30



in the trial space.

<Insert Figure 12 about here>

The subsidary strategies of reactive debugging, anticipatory

search, and inferential search use the trial space to develop knowledge

in three different ways:

1) to test hypotheses in the form of previously coded procedures,

2) to test instructions for possible use in procedures, and

3) to make inferences from the results of experiments.

Reactive debugging is effective primarily as a way of verifying

hypotheses but becomes cumbersome as a way of developing new knowledge.

Anticipatory search is a relatively risk-free way of experimenting

within the trial space, but it poses difficulties in terms of

transferring the knowledge gained into the program space; the

information must be stored in memory and retrieved or it must be

transcribed to paper and then into the editor. Although it can be used

to sift-out faulty code, debugging is often needed once the code is

tested. Inferential search depends upon the programmer knowing what

kind of information to gather and on knowing what to do with the

information once it is obtained.

The incremental strategy can be pursued with little thought of

what is to happen next. It is economical in that it only requires

dealing with circumscribed goals and small chunks of code and the

knowledge can be acquired largely on an experimental basis within the

programming process. However, it is very ad hoc and the code is highly

dependent upon the experimental context in which it is written. Once

written, the code is embedde3 in the context of what proceeds and

follows it in the body of the procedure, which leads to non-recyclable

code, unwieldy procedures with little discernible structure, and

programs which are difficult to comprehend or revise once they are

written.

The difficulties of this strategy become most apparent when it is

used in conjunction with a reactive debugging strategy. The program of

the first student consisted of a Single procedure with no REPEAT
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commands. As the session progressed, the problem became more complex

and the unstructured procedure became longer and more unwieldy. As a

result, it became extremely difficult for him to locate buggy code.

Perhaps in order to avoid the problems associated with debugging, he

increasingly used an anticipatory search strategy to select instructions

for inclusion in the procedure.

The refinement st;:ategy in the third example would appear to be

the polar opposite of the incremental strategy. Extensive planning is

required, and the programmer must be resourceful in finding appropriate

methods to carry out these plans. The knowledge required can be simply

retrieved, anticipatory search may be carried out, or the programmer may

rely on such processes as symbolic execution. The demands of this

strategy are relatively high, and because of this, the strategy is

probably the least economical of all the strategies.

This strategy becomes most problematic when it is used by students

who do not have the required knowledge base or resourcefulness in

method-finding. Even when the student is highly skilled (as the student

in the example was), refinement and debugging are almost always required

and sometimes protracted. As well, subsidiary strategies such as

anticipatory search can become problematic in the context of a strategy

which strives for completeness. For instance, before defining the

procedure to draw the deck, the student in the example trled out a

number of instructions in the trial space. He copied the successful

ones down on paper, and then transcribed them into the editor. However,

he made mistak,ls in the transcription and had difficulty locating the

erro-q.

The planning involved in the modular strategy is quite economical

in its use of cognitive resources. In this strategy, there is a

decomposition of the problem so that the segmented parts can be treated

as independent units. This permits the programmer to look for solutions

to circumscribed problems without concern with the effect of one command

on the whole program, and these units can be developed flexibly using

any of the subsidiary strategies. Because these independent chunks are
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accessible as units, in combing and integrating them into a whole, the

programmer is free to focus on them as they function within the whole

without concern for the information they organize. However, this

strategy requires the programmer to maintain an overall representation

of the structure of the problem and the function of the elements in the

program; in the example shown (Figure 12), the student appears to have

had problems locating and correcting the source of the difficulties he

encountered.

Each of the component-based strategies represents a different way

of organizing chunks of code into wholes: the incremental strategy,

sequentially by bits; the refinement strategy, as parts making up a

whole; and the modular strategy, as independent elements which can

manipulated as units within a whole. These different orientations to

the organization of code were reflected to some extent in the structures

of the programs that the students developed. As the session evolved,

those who consistently used an incremental strategy (S2, S6, and S7)

tended to develop unstructured programs consisting of a single procedure

or simple chained procedural structures, while those who regularly used

refinement and modular strategies (S1, S4, 55, and S8) for the separate

components developed two layer decompositional structures.

In summary, the students approached this graphics task in a

similar piece-meal fashion, but employed a variety of different

strategies in programming the component elements of the problem. Each

of these strategies involves a specific way of breaking thn problem down

into manageable proportions, of marshalling the appropriate knowledge of

methods and language structures, and of searching the problem spaces of

the task for a solution. In the following section, some strategies

which evolved in relationship to a non-graphics task are investigated.

7.2. The second task: High-Low

After compledng the section on graphic programming, the students

had six weeks of training to prepare for the second programming task.
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The training consisted of short lessons interspersed over the six weeks.

The training focused on groups of word-and-list commands and programming

techniques, and computer-based exercises were used to enable the

students to practice the material taught. After the introduction of

somt) basic concepts in the first session, the students started working

on a graphics project which involved programming the game "Tic-Tac-Toe."

Students worked individually and in groups, and the instructor assisted

them ir all phases of the programming of the game. Periodically, there

would be group discussions of issues that arose in programming the game.

All the students had to be assisted at various points to program the

game, and some required ext3nsive assistance; only one student (S1) was

able to program the game with only minimal assistance.

High-Low is a simple number game which involves guessing a number

between 1 and 100 and feedback is given as to whether the number guessed

is too high or too low. The students were given a set of specifications

(see Appendix C) for a game in which the computer generated a random

number which the player had to guess, and they were allowed 90 minutes

to complete the task.

Over the course of the training, wide disparities in skills

de :loped within the groups. It was anticipated that the task would be

relatively simple for some students and extremely difficult for others

with most students falling somewhere in between. In order to avoid

having the less proficient students become unduly frustrated by the

task, it was decided that students would be assisted to the degree

necessary for them ti have a working game by the end of the session.

The interventions varied from relatively minor ones to major ones

involving instruction. 'he content of the interventions included help

with such things as syntax (punctuation, format, etc.), semantics

(primitives and their significance), and logic (e.g., flow of control).

7.2.1. The programs

Because most of the students required some form of intervention
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relatively early on in the programming session, the line between

independent programming and assisted programming can be drawn

immediately prior to the point at which major instructional

interventions were required. Table 2 represents a scoring of the

programs according to the components of the task instructions that had

been constructed ui to that point; the times varied from 5 to 45 minutes

(mean 24, median 24). As the table indicates, one student (S1) was able

to implement all but one of the components of the game without

assistance, three were unable to implement any components (S3, S8, and

S9), and the rest implemented an average of six components each (S2, S4,

S5, S6, and S7). Five of the nine students (S1, S2, S4, S6, and S7)

were able to program the major functions of the qame so that it was

possible to play it.

<Insert Table 2 about here>

Tree diagrams for the programs constructed prior to a major

intervention (see Figure 13) show significant structural differences.

The five most successful students (S1, S2, S4, S6, and S7) used

procedural structures involving at least two layers: a superprocedure, a

set of instructions for getting the player's name and generating the

random number, and a recursive, looping structure which got the player's

guesses and processed them until the number was guessed. The programs

of the other students did not contain the essential looping structure;

some only involved two layered structures (S3, S5, and S8) and one only

had some elements of the superprocedure (S9).

<Insert Figure 13 about here>

Misunderstandings were evident even in the completed components of

the five more successful students. In one program (S2), READCHARACTER

rather than READWORD was used in the guess-entering component so that

only single digit numbers could be entered. The component which

generated the random number was fully implemented in only one program

(S1); the others generated numbers other in the range of 0 to 101. Some

of the main game loops were faulty. Two (S2 and S6) had incorrect

sequences with the procedure giving feedback before the error-checking
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component, and they had recursive calls to the main loop embedded in

subprocedures so that incomplete loops could reappear once the number

was guessed. Another (S7) had calls to an abandoned procedure.

More serious misunderstandings were evident in the programs of

those who were unable to complete the basic components of the task.

Only one of these students (S5) was able to complete even one component.

They all sketched out the superprocedure for the program, but in doing

so they exhibited basic confusions around the logic of the program and

its flow of control. None of these students' superprocedures had the

essential looping structure of the game, and in most the calls to

subprocedures merely represented the steps in the game as identified in

the instructions; in one (S9), the steps were not even in the correct

sequence.

7.2.2. The strategies

Although each of the students required at least one major

intervention at some point in the session, these interventions were

directed at supplying needed information and not at altering the basic

strategy that the students were using. However, to protect the

Integrity of the analysis here, the examples chosen to illustrate the

strategies are drawn from intervals in which there were no

interventions.

In LOGO there are significant differences between graphics

programming and programming interactive games using words and lists. For

one thing, while it is possible to draw complex shapes using sequences

of instructions in a single procedure, an interactive game such as

High-Low requires more complex structures. These differences in the

tasks should be reflected, not only in the kinds of structures the

subjects used, but in the strategies they used to develop them.

These differences are most evident in their initial approach to

the seconi task. Whereas in the first task, all the students programmed

in a component-by-component, depth-first fashion, in the econd task,
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they began the session by sketching out all or part of a superprocedure

for the game with calls to procedures to carry out specific functions.

The use of this top-down approach and simple decompositional structures

was no doubt prompted by the way in which the Tic-Tac-Toe game had been

developed in the weeks prior to the task.

Despite the dissimilarities in approaches to the two tasks, there

were commonalities as well. The different strategies they used in the

first task were in evidence in the second, although in somewhat

different guises. In so far as they chunked instructions for specific

functions and integrated these into wholes, they used a modular

strategy. Incremental and refinement strategies and the various

subsidiary strategies were employed as well in programming the separate

components of the task. However, in keeping with the initial top-down

approach used by the subjects in programming this task, the distinctive

characteristics of the strategies employed in this task have to do with

the students' overall approaches to program design.

Although they all had similar initial approaches to programming

the game, once they had completed the definition of the superprocedure,

their strategies diverged. The divergences can be described in terms of

the contrast between a breadth-first approach and a depth-first approach

and in relationship to the layers of the programs that the students

developed.

Figure 14 shows an example of a top-down, breadth-first approach.

The subject (S1) was highly successful in both tasks and he had employed

a refinement strategy in programming most of the components of the first

task. What is exhibited in this example is what looks like a

combination of the refinement and modular strategies. The essential

characteristics of this "breadth-first, refinement strategy" are:

1) The problem is decomposed completely or nearly so and

the superprocedure and its component functions are coded at

all levels;

2) method-finding and coding takes place wholly within the

problem space prior to any tests within the trial space; and
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3) the program is debugged largely by refinement of what

has been previously coded.

<Insert Figure 14 about here>

The sixth example (Figure 15) is of an heterogeneous strategy.

This student pursued a top-down, breadth-first approach up to the point

where he had to use specific primitives rather than just calls to

procedures. Once a greater level of detail was required, the subject

switched to a depth-first, incremental strategy. The essential

characteristics of this 'self-limited, breadth-first strategy" are:

1) The problem is decomposed completely or nearly so and

the superprocedure is coded,

2) the component functions of the game are coded at the

abstract level of procedure calls, but once the level of

specific instructions (involving the use of primitives) is

reached, a switch is made to a depth-first strategy,

3) the component functions are coded using incremental or

refinement strategies, and

4) method-finding takes place in both the program space and

the trial space.

<Insert Figure 15 about here>

Another example (Figure 16) of a heterogenous strategy illustrates

how the structural levels of the program affect its development. In

this example, once the student had defined and coded the superprocedure,

he proceeded to define and code a level at a time; when he reached a

level where a procedure was thought to be completely coded, he tested

and debugged it. This "stratification strategy" has the following

characteristics:

'1) The problem is decomposed completely or nearly so and

the Euperprocedure is coded,

2) the component functions of the game are coded a level at

a time; when a function is completely coded, it is tested

and debugged,

3) the component functions are coded using refinement
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strategies, and

4) method-finding takes place in both the program space and

the trial space.

<Insert Figure 16 about here>

A subsidiary strategy exhibited in this example (line 9) is that

of "verification search," which is a way of determining whether the

purposa of a component function has been fulfilled. The essential

characteristics of this strategy are:

1) A component function which generates a value for a

variable is tested in the trial space;

2) ihe value of the variable is printed in the trial space;

and

3) the feedback is used to determine if the component

function works as intended.

The next example (Figure 17) illustrates a heterogeneous strategy

which is also affected by program levels, but it is more depth-first

than breadth-first. The difference is in the development process. The

student failed to employ a looping function; as a result all the

component functions of the program are at one level. The component

functions were then developed and refined in a sequential fashion

according to the order of the procedure calls in the superprocedure.

Once one component function was debugged, an error message would appear

indicating that the program had reached an undefined procedure, and then

the student would define and develop that procedure. This cycle

continued until all the component functions were programmed; the student

then discovered that the game not did work as intended, and he had to

introduce a game loop and work out the flow of control. This sequential

design strategy has the following characteristics:

1) The problem is decomposed completely or nearly so and

the superprocedure is coded,

2) the component functions are defined and coded

sequentially according to the order in which they appear in

the superprocedure,
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3) the component functions are defined using incremental or

refinement strategies,

4) method-finding takes place in both the program space and

the trial space.

<Insert Figure 17 about here>

These strategies can be contrasted in terms of the programmer's

overall representation and grasp of program design and how the

programmer's knowledge is deployed and developed in the programming

process.

The kind of breadth-first refinement strategy exhibited in the

first example is linked in the literature with higher levels of

expertise. This student was able to program the most components in the

least time without assistance and finished the task well before the time

was up; he demonstrated a mastery of the design process and could access

functional units of programming knowledge which allowed him to program

the game without need of extensive testing.

The use of the self-limited breadth-first strategy suggests a

grasp of the fundamentals of game design but uncertainty about details;

in other words, the student using the strategy could represent the

problem as a whole but had difficulty accessing the functional units of

knowledge necessary to carry it out to a solution. Consequently, he had

to resort to developing components of tfie program through an incremental

strategy and extensive tests in the trial space.

The stratification strategy demonstrates knowledge of game design'

'7:1--And some sophistication about program structure. It is opportunistic in

the sense that it takes advantage of the possibilities for testing out

component functions as the stage of program development allows, but the

programmer can remain in control of what elements of the program will be

tested and refined.

The sequential strategy is the least developed of the four in

terms of the grasp of game design involved -Ad its control over the

programming process. The subject in the example does not appear to have

had a clear overall representation of the problem and exercises little
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control over the course of program development; he simply repeatedly

tested the program as it had been developed and used the feedback he

received to determine what he should do next. In this respect, the

strategy is quite similar to the incremental strategy used in the first

task, with many of the same difficulties.

Perhaps the greatest common difficulty that the students had in

programming this task was a result of the restrictions on search in the

trial space that they imposed on themselves. With few exceptions, the

students used tests of the superprocedure to get feedback from the trial

space, and in doing so, they failed to take advantage of the

decompositional structure of the programs they had constructed'.

This was not particularly problematic in the early stages in program

development when they were dealing with only a few components, but it

caused significant difficulties in the later stages. As the session

progressed, most of the students became embroiled in trying to sort out,

at the same time, relatively minor problems which were internal to the

components and major difficulties having to do with the relationships

between the components (e.g., problems with the logic and flow of

control of the programs).

8. Discussion

Problem solving strategies have been identified in the context of

a graphics programming task and an interactiue game task. This analysis

of strategies, framed within the context of the agenda model sketched

above, provides an interpretation of what the students did in these two

programming tasks.

In terms of the agenda model, problem solving strategies are ways

in which goals are scheduled and methods are used to achieve goals. The

"The verification search strategy could be used in a variety of
ways to test individual components of the program. For instance, an
error-checking procedure could be tested independentll using a dummy
input variable.
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programmer's knowledge guides search in the two problem spaces at two

levels of the model. The first level is that of the programmer's

representation of the problem. According to the model, each of the

strategies represents a different way of decomposing goals and thus a

different kind cf agenda for dealing with the task. The agenda is

determined by the programmer's ab: 'H, to grasp the problem as a whole

and to use the necessary language s res to support a solution. The

second level of the model is that of the specific methods used to

implement goals. These methods can be specific sequences of operators

which directly bring about changes in the program or they can be ways of

finding these methods. To follow an agenda, the programmer must draw.on

a knowledge base of these methods. Accordingly, the availability or

lack of availability of appropriate methods shapes the agenda and the

ordering of goals.

The strategies exhibited in the first task do not involve a

representation of the problem as a whole; the component-based goals

appear to have been taken from the external agenda represented by the

task instructions. In programming the specific components of the

problem, the refinement and modular strategies involve an overall

representation of the component, and the modular strategy involves a

decomposition of the component as well as an awareness of the structures

available within the language to express that decomposition; only the

incremental strategy appears to lack an overall representation.

Whatever limitations these strategies may have had, most of the

programmers had a variety of available methods for achieving the goals

they set; they appear to have had experiences with instructions that

they could draw upon and search strategies for finding methods (e.g.,

symbolic execution, anticipatory search) within the two spaces of the

task.

The strategies employed in the second task generally involve a

representation of the whole problem and a decomposition of the goals of

the task; however, there were clear limitations in the students' grasp

of program design and in their ability to use appropriate language
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structures. Some were able to follow the agenda of the goal

decomposition and program the components completely from top to bottom,

others could only sketch them out by levels or sequentially as it became

necessary. Clearly the strdents had considerably greater difficulty

with this task than they had with the earlier graphics task. However,

for all but the most successful student, the difficulty was not so much

at the level of their overall representation of the problem, but at the

level of having the appropriate methods for implementing the goals that

they initially set. _ne difficulty was that they had not developed the

ranae of subsidiary strategies which had served them so well in finding

appropriate methods in the graphics task.

9. Conclusion and implications

As computers become more common within the educational system,

techniques for analyzing and assisting learning will need to be

developed which take advantage of the opportunities that the technology

presents. This paper is an illustration of an approach to the

investigation of cognitive processe which has particular application to

the investigation of problem solving in computer-based learning

environments. The key features of this approach are the automated

collection and analysis of trace records and the construction and

application of models for explaining the cognitive processes represented

in these records. At its present state of implementation, this approach

is suitable only for research on circumscribed tasks. However, as the

approach develops, it will reach the point at which it can be used

routinely by teachers to understand what their students are doing in the

computer-based environments so that they can provide the students with

advice and direction. Eventually this approach will be developed to the

point at which automated tutors will be able to develop models of the

user and provide appropriate individualized assistance instantaneously.

But the impact of this approach may be more widely felt than just in the

area of computer-based learning. Educators who are dissatisfied with
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basing evaluations on group comparisons and static, norm-referenced

tests may find in the process-analytic paradigm principles which can be

applied to underpin the observational techniques used within classrooms.
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Table 1: components of the House-Playhouse figure programmed

SI S3 S6 S2 S4 S8 S9 S5 Tot

1A 1 1 1 1 1 1 1 1 9

2A 1 1 1 1 1 1

5A 1 1 1 1 1 1 1 1 1 9

4A 1 1 1 1 1 0 1 .8* .5 7.3

3A i 1 1 1 1 0 1 1 0 7

6A 1 1 0 1 1 1

9A 1 1 0 0 1 1 1 0 0 5

7A 1 0 0 1
-.,

1 1

-

0 0

4

0

.

4

18 1 1 1 0 0 0 0 0 0 3

3B 1 1 1 0 0 0

2B 1 1 0 1 0 0 0 0 0 3

8A 1 1 0 0 0 1 0 0 0

5B 1 1 0 . 0 0 0 0 0 0 2

68 1 1 0 0 0 0 0 0 0 2

4B 0 1 1 0 0 0 0 0 0 2

9B 0 1 0 0 0 0 , 0 0 1

7B 0 0 0 0 0 0 0 0 0 0

88 0 0 0 0 0 0 0 0 0

Tot 14 14 9 8 8 7 7 4.8 3.5

min 93 88 90 85 94 94 102 99
-,===
86

main house playhouse

1A body of house 1B body of playhouse

2A door 2B door

3A first floor windows 3B first floor windows

4A second floor windows 4B second floor windows

5A roof 5B roof

6A chimney 6B chimney

7A deck 7B deck

8A picket fence 8B picket fence

9A stairs 9B stairs

* a fraction indicates that the component was implemented only in part
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Table 2: components of the High-Low game programmed

S1 S4 S6 S7 S2 S5 S3 S8 S9 Tot

1 1 1 1 1 1 0 0 0 6

3 1 1 1 1 1 0 0 0 0 5

1 1 1 1 1 0
_
0 0 0 5

5 1 1 1 .5* .5 0 0 0 0 4

7
1 1 1 1 0 0 0 0 0 4

.

1 .5 .5 .5 .5 0 0 0 0 3

8 1 1 0 0 0 0

t

0 0
_
0 2

9 1 1 0 0 0 0 0 0 ° 2

4 .5 0 0 0 0 0 0 0 0 .5

tot 1 1 1 0 0 0 0 0 0 3

min 24 32 24 42 45 11 16 19 5 3

1 get name function
2 function to generate random number
3 function for entering number
4 function for checking fcr incorrect input
5 loop
6 inform if high, low, or won
7 inform by name
8 print out number of guesses
9 print out guesses

* a fraction indicates that the function was implemented only in part.
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Figure I: Traditional protocol analysis
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Figure 2: The two problem spaces
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Figure 3: The record generator

Recording:

recording program records:
mode (immediate, define, edit, error, etc.)
initiating action and contents of mode
time stamps (in tenths of second, time from previous
action, time to completion of action)

DE: [TO DOOR] [[RT 90] [FD :SIDE1 / 2] [FD :SIDE1 / 3 RT 90] [FD :SIDE1 / 4 RT 90]] [[466] [2161]]

ED: [ED "DOOR] [[[TO DOOR] USIDE1] [RT 90] [FD :SIDE1 / 2 LT 90)]]

UTO RECTANGLE] USIDE1] [REPEAT 2 DT :SIDE1 / 3 RT 90 FD :SIDE1 / 4])]]] [[256) [2852])

IN: [HOUSE1 50] 0 [[241] [31])

ER: [HOUSE1 50] [35 [I DON'T BOW HOW TO SIDE1) ROOF [FD :SIDE1 RT 90 FD SIDE1 RT 180] RIGHT SIDE1]

[[85]

Displaying (printing or replaying):

put record lists into readable form:

(5) (46.6 / 216.1 / 262.7 / 0:07:01)

DE: TO DOOR

TO Dom
RT 90
FD :SIDE1 / 2
FD :SIDE1 / 3 RT 90 FD :SIDE1 / 4 RT 90

END

(7) (25.6 / 285.2 / 310.8 / 0:12:18)

ED: TO DOOR

RT 90

FD :SIDE1 / 2 LT 90

END

(11) (60 / 108.6 / 168.6 / 0:17:16)

ED: TO HOUSE1 :SIDE1

HOUSE :SIDE1

DOOR :SIDE1

RECTANGLE :SIDE1

END

{12) (24.1 / 3.1 / 27.2 / 0:17:43)

IN: HOUSE1 50

displays trial state (when replaying):
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Figure 4: The encoder

Identif :

(focused on program states) indicates changes, prints lines of
procedure, and prints the old and new version of the procedure
segmented into units of instructions.

TO DOOR

RT 90
FD :SIDE1 / 2 LT 90

END

new list: [TO DOOR] [RT 90] [FD :SIDE1 / 2] [LT 90]

old list: [TO DOOR] [RT 90] [FD :SIDE1 / 2] [FD / 3] [RT 90] [FD :SIDE1 / 4] [RT 90]

Coding:

delete 4

old list: [TO DOOR] [RT 90] [FD :SIDE1 / 2]

- [FD :SIDE1 / 3]

- [RT 90]

- [FD :SIDE1 / 4]

- [RT 90)

append 1

new list: [TO DOOR] [RT 90] [FD :SIDE1/2]
+ [LT 90]

5 0
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Figure 5: The problem behavior graph generator

Output ft_l_3manaly2z-arn:

[define HOUSE] [] [def] [1] [HOUSE] []

11 [] [app] [1] [HOUSE] [] [41.1]

[] [] [] [3] [HOUSE] [][98.2]
[define DOOR] [] [def] [5] [DOOR] 0
[] [] [am] [5] [DOOR] 0 [262.7]
[] [] [error] [6] [DOOR] [ED: DOOR] [DOOR HIS NO VALUE] [6.4]

[] [] [7] [DOOR[] [define RECTANGLE] [] [def] [7] [RECTANGLE) 1]

[] [] [app] [7]-[RECTANGLE] [] [310.8]

Input to Problem Behaviour Graph Generator:

[square] 0 [] [] [] []
[define HOUSE] [square] [def] [1] [HOUSE] [] [41.1]

[use variables] [square] [ins w/in) [3] [HOUSE) []

[make square) [square] [app] [3] [HOUSE] [1 [98.2]

[square and door] 0 [] [] [] [1
[door] [square and door] [1 [] 0 0
[define DOOR] [door] [def] [5] [DOOR] []

[position, draw door] [door] [app] [5] [DOOR] i] [262.7]

[edit DOOR) [door] [error] [6) [ED: DOOR] [DOOR HAS NO VALUE] [6.4j

[take out door] [position, drau door] [dal] [7] [DOOR] []

[turn in to draw door] [position, draw door] [app] [7] [DOOR] []

[rectangle] [door] [] [] [] []

[define RECTANGLE] [rectangle] [del] [7] [RECTANGLE] 0

[do rectangle] [rectangle] [app] [7] [RECTANGLE] [1 [310.8]

Out ut of Problem Behaviour_amb Generator:

G: square
G: define HOUSE ( def ) < 1 > ( HOUSE ) < 41.1 >

G: use variables ( ins w / in ) < 3 >.( NOOSE )

G: make square ( app ) < 3 > ( HOUSE ) <98.2>

G: square and door

G: door
G: define DOOR ( def ) < 5 > { DOOR )
G: position, draw door ( app ) < 5 > ( DOOR )

G: edit DOOR ( error ) < 6 > ( ED :DOOR ) < 6.4 >

( DOOR HAS NO VALUE )

S: position, draw door
G: take out door ( del ) < 7 > { DOOR )
G: turn in to draw door ( app ) < 7 > ( DOOR )

0: rectangle
G: define RECTANGLE ( def ) < 7 > { RECTUM )
G: do rectangle ( app ) < 7 > { RECTANGLE ) <310.8>
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Figure 6: The agenda model
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S1

Figure 7: The output of the House-Playhouse programs
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Figure 8: The structure of the House-Playhouse programs

Simple two layered
decomposition: Sl, S4, S5, 58:

Single procedure: S2 & S6:

Simple chaining: S7:

Complex double
decompositon
with chaining: S3:

S9:
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PROGRAM SPACE

<1> TO HOUSE

>PU

>IT 90

>FD 50

>END

<3> TO HOUSE

FD 100
( FD 50 )

END

<6> TO HOUSE

LT 90

PD
FD 100
END

<10> TO HOUSE

.

LT
FD 150

END

<13> TO HOUSE

LT 90

FD 150

END

<16> TO HOUSE

LT 90

FP 175

END

Figure 9: Example 1

Subject 2, episode 1, task 1

PROBLEM BEHAVIOUR GRAPH

G: square

G: define HOUSE (def) < 1 > { HOUSE )

G: make start (app) < 1 > { HOUSE }< 113 >

G: test SQUARE (invoke) < 2 > HOUSE ) < 6.6 >

S: make start
G: more right (del w/in, ins w/in) < 3 > { HOUSE ) <27.7>

G: test SQUARE
G: clearscreen (invoke) < 4 > { CS ) < 1.5 >

G: test it (invoke) < 5 > { HOUSE ) < 6.1 >

G: left, up (app) < 6 > { HOUSE ) < 41 >

G: test SQUARE
G: clearscreen (error) < 7 > { CAS ) < 4.1 >

( I DON'T KNOW HOW TO CAS )
G: try again (invoke) < 8 > { CS ) < 2.4 >

G: test it (invoke) < 9 > { HOUSE ) < 3 >

G: left, across top (app) < 10 > { HOUSE ) < 32.5 >

G: test SQUARE
G: clearscreen (invoke) < 11 > { CS } < 3.3 >

G: test it (error) < 12 > { HOUSE ) < 3.1 >

( NOT ENOUGH INPUTS TO LEFT )

S: left, across top
G: put in angle (ins) < 13 > { HOUSE )

G: test SQUARE
G: clearscreen (invoke) < 14 > { CS )

G: test it (invoke) < 15 > { HOUSE )

G: left and down (app) < 16 > { HOUSE )

G: test SQUARE

<18> TO HOUSE G: clearsaeen (invoke) < 17 > { CS ) < 2.5 >
G: test it (invoke) < 18 > { HOUSE ) < 2.7 >

LT 90
FD 150 G: around to start (app) < 19 > { HOUSE < 38.6 >

LT 90
FD 100 G: test SQUARE

END G: clearscreen (invoke) < 20 > { CS ) < 1.3 >

G: test it (invoke) < 21 > { HOUSE ) < 3.9 >

0 J

oreT tinny A111111

TRIAL SPACE

<2> HOUSE

<4> CS

<5> HOUSE 4.

<8> CS

<9> HOUSE

<11> CS

<12> HOUSE

<14>,CS

<15> HOUSE

<17> CS

<18> HOUSE

<20> CS

<21> HOUSE
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Figure 10: Example 2

Subject 3, task 1, episode 1

PROGRAM SPACE I PROBLEM BEHAVIOUR GRAPH

<1>

TO ROUSE

>CB

>PO

END

<3>

TO HOUSE :SIDI

CS

PU

BREND

END

<9>

TO HOUSE :SIDE

CS

PU

BK ao
LT 90

VD 120

PD
MIT 4 [FD :EDE RT 90]
END

<12>

TO HOUSE :SIDE

CS

PU

BK 80

LT 90
FD 120

RI 90

PD

REPEAT 4 [FD :SIDE RT 90]

END

G: square

G: define HOUSE ( def ) < 1 > { HOUSE

G: set up to start ( app ) < 1 > { HOUSE ) < 185.9 >

G: edit HOUSE ( error ) < 2 > { ED"HOUSE ) < 7.1 >

( I DON'T KNOW HOW TO ED"HOUSE )

G: use variable ( ins w / in ) < 3 > { HOUSE )

G: get in position ( app ) < 3 > { HOUSE } < 46.2 >

G: see what to do next

G: try this ( invoke ) < 4 > { BK 40 }< 4.8 >

G: try this ( invoke ) < 5 > { BK 40 ) < 4.5 >

G: try this ( invoke ) < 6 > { LT 90 ) < 5.2 >

G: try this ( invoke ) < 7 > { FD 100 }< 6.1 >

G: try this ( invoke ) < 8 > { FD 20 } < 4.8 >

G: use info ( ins w / in, app ) < 9 > { HOUSE )

G: make a square ( app ) < 9 > { HOUSE ) < 90.6 >

G: test HOUSE ( error ) < 10 > { HOUSE < 4.4 >

( NOT ENOUGH INPUTS TO HOUSE )

G: use an input ( invoke ) < 11 > { HOUSE 30 ) < 6.9 >

S: get in position

G: reposition ( ins ) < 12 > { HOUSE ) < 25.2 >

G: test SQUARE ( invoke ) < 13 > { HOUSE 100 < 8.9 >

TRIAL SPACE

<4>

BK 40

<5>

BK 40

<6>

LT 90

<7>

FD 100

<8>

FD 20

<11>

HOUSE 30

<12)

HOUSE 100
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PROGRAM SPACE

<1> TO STRUCTURE

CS P9 RT 180 FD 100

RT 90 FD 50 RT 90 PD

REPEAT 2 [REPEAT 4 [FD
100 RT 90] FD 100]

RT 45 FD 75 RT 135 FD 75

<3> TO STRUCTURE
...FD 125 (FD 100)

RT 90 FD 50 RT 90 PD
REPEAT 2 [REPEAT 4 [FD

100 RT 90] FD 100]
RT 45 FD 75 RT 90

(RT 135) FD 75

<5> TO STRUCTURE
..FD 120 (FD 125) PT 90

FD 50 RT 90 PD REPEAT 2
[REPEAT 4 [FD 90 (FD 100)

RT 90] FD 90 (FD 100)] RT
45 FD 75 RT 135 FD 75

<15> TO STRUCTURE
..FD 50 (FD 75)

RT 90 FD 50 (IT 75)

<22> TO STRUCTURE
...FD 60 (FD 50)
RT 90 FD 60 (FD 50)

<24> TO STRUCTURE
...FD 65 RD 60)
RT 90 FD 65 (FD 60)

<26> TO STRUCTURE
..FD 63 (FD 65)

RT 90 FD 65

END

Figure 11: Example 3

Subject 1, episode 1, task 1

PROMEM BMW= GRAPH
G: outline house

G: define STRUCTURE ( def ) < 1 > ( STRUCTURE )

G: make outline ( app ) < 1 > ( STRUCTURE ) < 275.4 >

G: test STRUCTURE ( invoke ) < 2 > ( STRUCTURE ) < 7.5 >

G: get in frame ( rep w/in ) < 3 > ( STRUCTURE )

G: fix peak angle (rep w/in) <3> (STRUCTURE) <48.8>
G: test STRUCTURE ( invoke ) < 4 > ( STRUCTURE ) < 4.4 >

S: get in frame
G: not 90 10W (rep Win) <5> (STRUCTURE)
G: smaller (rep w/in) <5> (STRUCTURE) <81.2>

G: test STRUCTURE ( invoke ) < 6 > ( STRUCTURE ) < 5.1 >

G: make roof meet
G: find way to meet

G: try this ( invoke ) < 7 > ( BK 75 ) < 33.7 >

G: try this ( invoke ) < 8 > ( RT 135 ) < 5.5 >

G: try this ( invoke ) < 9 > ( LT 135 ) < 13.4 >

G: try this ( invoke ) < 10 > ( LT 135 ) < 8.3 >

G: try this ( invoke ) < 11 > ( RT 45 ) < 4.8 >

G: try this ( invoke ) < 12 > ( BK 75 ) < 11.3 >

G: try this ( invoke ) < 13 > ( FD 50 ) < 4.1 >

G: try this ( invoke ) < 14 > ( FD 5 ) < 11.1 >

G: closer (rep Win) <15> (STRUCTURE) <31.1>
G: test STRUCTURE ( invoke ) < 16 > ( STRUCTURE ) < 4,9 >

S: make roof meet
S: closer

G: measure
G: try this ( invoke ) < 17 > ( LT 45 ) < 11.9 >

G: try this ( invoke ) < 18 > { HT }< 4.7 >
G: try this ( invoke ) < 19 > ( FD 10 ) < 4.7 >

G: try this ( invoke ) < 20 > ( FD 5 ) < 3.4 >

G: try this ( invoke ) < 21 > ( FD 5 ) < 5.5 >

G: more (rep On) <22> (STRUCTURE) <22>
G: test STRUCTURE ( invoke ) < 23 > ( STRUCTURE ) < 3.4 >

S: make roof meet
S: closer

S: more
G: and more (rep On) <24> (STRUCTURE) <30.4>

G: test STRUCTURE ( invoke ) < 25 > ( STRUCTURE ) < 7.2 >

S: make roof meet

S: closer
S: more

S: and more
G: bit more (rep On) <26> (STRUCTURE)<26>

G: test STRUCTURE ( invoke ) < 27 > ( STRUCTURE ) < 2.5 >

5 7

RiTT NM/ MIAII ADI

TRIAL SPACE

<2> STRUCTURE

<4> STRUCTURE

<6> STRUCTURE

<7> BK 75

<8> RT 135

<9> LT 135

<10> LT 135

<11> RT 45

<12> BK 75

<13> FD 50

<14> FD 5

<16>

<17>

<18>

<19>

<20> FD 5

<21> FD 5

STRUCTURE

LT 45

HT

FD 10

<21> STRUCTURE

<25> STRUCTURE

<27> STRUCTURE
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PROGRAM SPACE

<I> TO BROD
>WIRT 5 [oulas]

<2> TO
REPRAT 41,11210 IT 90]

<3> TO BEGIN
SQUARE

(ROUT 5 [SQUARED
TRIANGLE

TO SQUARE
REPEAT 5 [FD 40 RT 90]

(REPEAT 4 [FD 40 RT 90])

TO TIMM
LT 90

RT 18
FD 20
LT 36
FD 20

<8> TO TRIANGLE
IT 90
(LT 90)

RT 18

FD 20

LT 36

FD 20

<9> TO BEGIN
CS
SQUARE

TRIANGLE

<11> TO SQUARE
REPEAT 4 [FD 40 RT 901

(REPEAT 5 [FD 40 RT 90])

<13> TO SQUARE

REPEAT 6 [FD 40 RT 90]

Figure 12: Example 4

Subject 4, episode 1, task 1

PROBLEM IHEHAVIOUR GRAPH

G: square with roof

G: define BEGIN (def) < I > ( BEGIN )

G: square
G: call SQUARE repeatedly (app) < 1 > ( BEGIN ) < 132.6 >

G: define SQUARE ( def ) < 2 > ( SQUARE )
G: make square ( app ) < 2 > ( SQUARE ) < 59.4 >

G: remove multiple calls ( del ) < 3 > ( BEGIN )

G: roof
G: call TRIANGLE ( app ) < 3 > ( BEGIN )

G: get to top of SQUARE ( del w/in, ins w/in ) < 3 > ( SQUARE )

S: roof
G: define TRIANGLE ( def ) < 3 > ( TRIANGLE )

G: make triangle ( app ) < 3 > ( TRIANGLE ) < 120.5 >

G: test TRIANGLE
G: clearscreen ( invoke ) < 4 > { TRIANGLE ) < 2.1 >

G: test it ( invoke ) < 5 > ( TRIANGLE ) < 6.7 >

G: test BEGIN
G: clearscreen ( invoke ) < 6 > ( BEGIN ) < 2.7 >

G: test it ( invoke ) < 7 > ( BEGIN ) < 3.7 >

G: get roof on top ( del, ins ) < 8 > ( TRIANGLE ) < 19.2 >

G: ease tests ( ins ) < 9 > ( BEGIN ) < 8.1 >

G: test BEGIN ( invoke ) < 10 > ( BEGIN ) < 3.4 >

G: get house upright ( del, ins ) < 11 > ( SQUARE ) < 19.4 >

G: test BEGIN ( invoke ) < 12 > ( BEGIN )

S: get house upright
G: get house inverted ( del, ins ) < 13 > { SQUARE )

G: test BEGIN ( invoke ) < 14 > { BEGIN ) < 2 >

TRIAL SPACE

<4> CS

<5> TRIANGLE

<6> CS

<7> BEGIN

<12> BEGIN

<14> BEGIN
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Figure 13: The structure of the High-Low programs

Three layer with
looping structure: Sl, S2, S4, S6: 1

1

Two layer with
looping structure: S7: 1

1

*1 *

Two layer with no
loop: S3, S5, S8: 1

1

1

1

One layer: S9
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Figure 14: Example 5 (episode 1, task 2, S1)

G: basic game
G: define PLAY ( def ) < 1 > { PLAY )

C: gather list of guesses
G: initialize guesses list ( app ) < 1 > { PLAY )

G: get value for name
G: make variable for OP of ASK.NAME ( app ) < 1 > { PLAY )

G: get value for random number ( app ) < 1 > ( PLAY )

G: game loop
G: call GINE ( app ) < 1 > ( PLAY )

S: get value for name
G: define ISK.NAMES ( def ) < 1 > { ASK.NAPIES )
G: get value for name for OP to PLAY ( app ) < 1 > { ASK.NAME )

S: game loop
G: define GAME ( def ) < 1 > GAME }

G: get valid guesses
G: make variable for OP of ASK.GUESS ( app ) < 1 > { GAME )

S: gather list of guesses
G: create list of moves ( app ) < 1 > { GAME

G: check if von
G: create variable by call to CHECK.CORRECT ( app ) < 1 > ( GAME )

G: informing function
G: call WIN and stop if won ( app ) < 1 > { GAME )

G: give feedback on guesses if not win
G: call ANSWER ( app ) < 1 > ( GAME )

S: game loop
G: recurse to GAME and stop ( app ) < 1 > { GAME )

S: get valid guesses
G: define ISK.GUESS ( def ) < 1 > { ASK.OUESS
G: get guesses for output to GAME ( app ) < 1 > { ASK.GUESS )

G: get input ( app ) < 1 > { ASK.GUESS )
G: error check for out of range ( app ) < 1 > { ASK.GUESS )

S: check if won
G: define CHECK.CORRECT ( def ) < 1 > CHECK.CORRECT )

G: if won output to GAME ( app ) < 1 > { CHECK.CORRECT }

S: informing function
G: define WIN ( def ) < ? > ( WIN )
G: inform by name if won ( app ) < 1 > ( WIN )
G: inform how many moves ( app ) < 1 > ( WIN )

G: inform what moves
G: call PMOVES ( app ) < 1 > ( WIN )
G: define PMOVES ( def ) < 1 > { PROVES )
G: print moves on separate lines ( app ) < 1 > { PMOVES )

S: give feedback on guesses if not win
G: define ANSWER ( def ) < 1 > ( ANSWER )
G: give feedback ( app ) < 1 > ( ANSWER ) < 1278.9 >

G: test PLAY ( error ) < 2 > ( PLAY ) < 11 >

( MOVE has ) volue in ANSWER )
G: make variables c asistent ( del w / in, ins w / in ) < 3 > { ANSWER < 30 >

G: test PLAY ( error ) < 4 > ( PLAY ) < 23.7 >

( NUM has no value in WIN )
G: create counting function ( app ) < 5 > ( GAME )

G: initialize NUM for counting moves ( app ) < 5 > { GAME }
G: provide for incrementing NUM ( app ) < 5 > { GAME ) < 47.1 >

G: test PLAY ( invoke ) < 6 > { PLAY ) < 17.8 >
G: take out CS ( del ) < 7 > { ASK.NAMES ) < 42.3 >

G: test PLAY ( invoke ) < 8 > { PLAY ) < 29.3 >

GO
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Figure 15: Example 6 (episode 10 task 2, 132)

G: basic game
G: define START ( def ) < 1 > { START }< 28.6 >

G: edit ( empty ) < 2 > ( ) < 5.6 >

G: introduction
G: call INTRO ( app ) < 3 > ( START )

G: get name function
G: call GET.NAME ( app ) < 3 > ( START )

G: record guesses
G: call MAKE.LIST ( app ) < 3 > { START )

G: game loop
G: call PLAYER.LOOP ( app ) < 3 > { START }

G: get it to go again
G: call TRY.AGAIN ( apn ) < 3 > ( START )

G: end game function
G: call END.GAME ( app ) < 3 > { START < 49.4 >

S: game loop
0: define PLAYER.LOOP ( def ) < 4 > { PLAYER.LOOP )

G: erase message
G: call ERASE.MESSAGE ( app ) < 4 > { PLAYER.LOOP )

G: random number function
G: call RANDOM.NUM ( app ) < 4 > ( PLAYER.LOOP )

G: get guess
G: call GR.O.GN ( app ) < 4 > ( PLAYER.LOOP )

0: error checking
G: call LEGAL? ( app ) < 4 > ( PLAYER.LOOP )

G: feedback
G: call WIN? ( app ) < 4 > { PLAYER.LOOP )

S: game loop
G: recurse to PLAYER.LOOP ( app ) < 4 > ( PLAYER.LOOP )

S: get name function
G: define GET.NAME ( def ) < 5 > GET.NAME )

C: get name ( app ) < 5 > { GET.NAME ) < 49.9 >

6: test GET.NAME ( error ) < 6 > { GET.NAME }< 1.8 >

( I don't know how to RS )

S: get name
G: substitute RW ( del w / in, epp ) < 7 > {GET.NAME } < 147.6 >

G: test 1ET.NAME ( invoke ) < 8 > { GET.NAME < 4.6 >

G: give instructions ( ins ) < 9 > { GET.NAME )

G: print name of player ( app ) < 9 > { GET.NAME ) < 61.3 >

G: test Gr.NAME ( error ) < 10 > (,GET.NAME ) < 3.4 >
( I don't know what to do with FDSD )

5: print name of player
G: fix name printing ( del w / in, ins w / in ) < 11 > { GET.NAME ) < 20.7 >

G: test GET.NAME ( invoke ) < 12 > { GET.NAME )

S: print name of player

S: fix name printing
G: put on different lines ( del w / in, ins ) < 13 > { GET.NAME ) < 15.7 >

G: test GET.NAME ( invoke ) < 14 > ( GET.NIAME < 3.9 >
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Figure 16: Example 7 (episode 1, task 2, S4)

G: basic game
G: define BEGIN ( def ) < 1 > { BEGIN )

G: random number function
G: call FIND# ( app ) < 1 > { BEGIN

G: process guess
G: call GUESS ( app ) < 1 > { BEGIN )

G: check number function
G: call CHECK ( app ) < 1 > ( BEGIN )

S: random number function
G: define FINN ( def ) < 1 > { FIND# }< 336.2 >
G: test RANDOM command ( invoke ) < 2 > { ) < 4.1 >

G: test RANDOM command ( invoke ) < 3 7 { ) < 6.1 >

G: test RANDOM command ( invoke ) < 4 > { < 1.4 >

G: generate random number ( app ) < 5 > { FIND# }< 64.5 >

G: test BEGIN ( error ) < 6 > ( BEGIN ) < 4.6 >

( not enough Inputs to FIND# )

S: random number function
G: get rid of number variable in command line ( del ) < 7 > { FINN ) < 26.7 >

G: test BEGIN ( error ) < 8 > { BEGIN < 11.3 >

( NUM has no value )

S: random number function
G: verify number ( error ) < 9 > { ) < 9.9 >

( NUM has no value )

G: get name function
G: call GET.NAME ( ins ) < 10 ) { BEGIN

Gt abandon CHECK ( del ) < 10 > { BEGIN )

S: random number function
S: generate random number

G: change punctuation of variable ( del w / in, ins w / in ) < 10 > { FIND# )

S: process guess
G: define GUESS ( def ) < 10 > { GUESS )

G: get guess ( app ) < 10 > { GUESS )

G: win function
G: if win, call WIN ( app ) < 10 > ( GUESS )

G: feedback function
G: if not win, call HINT ( app ) < 10 > { GUESS

S: get name function
G: define GET.NAMF ( def ) < 10 > { GET.NAME

G: get name ( app ) < 10 > { GET.NAME ) < 306.2 >
G: test BEGIN ( error ) < 11, 12 > { BEGIN ) < 8.2 >

( I don't know how to AVID, get first letter, then rest )

S: get name function

G: get all of name
G: see what name is ( app ) < 13 > { GET.NAME ) < 25.4 >

G: test BEGIN ( error ) < 14 > ( BEGIN ) < 4 >
( not enough inputs to MAKE in FIND#. just gets first letter of name )

S: random number function

S: generate random number
G: correct syntax of MAKE ( del, ins w / in ) < 15 > FIND# < 104.5 >

G: test BEGIN ( error ) < 16 > ( BEGIN ) < 8.6 >

( I don't know how to HIM )

S: get name function
S: get all of name

G: isolate GET.NME ( ins ) < 17 > ( BEGIN ) < 27.7 >

G: test BEGIN ( error ) < 18, 19 > { BEGIN < 6.1 >

( I don't know how to AVID, get first letter, then rest )

S: get name function

S: get all of name
G: switch to RW ( del, ins ) < 20 > { GET.NAME ) < 16.4 >

G.: test BEGIN ( invoke ) < 21 > { BEGIN ) < 5.3 >
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Figure 17: Example 8 (episode 1, task 2, 83)

G: basic game
G: define START ( edit error ) < 1 > START ) < 23.9 >

G: try again ( def ) < 2 > { START

G: setup
G: call BEGIN ( app ) < 2 > ( START )

G: get name function
G: call EMTERNAME ( app ) < 2 > ( START )

G: get random number
G: call GHOOSENUMBER ( app ) < 2 > { START }

G: get guesses
G: call ENTERNUMBER ( app ) < 2 > { START )

G: error check
G: call LEGAL ( app ) < 2 > { START

G: give feedback on guesses

G: call TOOHIGHLCW

G: check if won
G: call CHECKWIN ( app ) < 2 > ( START )

G: inform if won
G: call WIN ( app ) < 2 > ( START j

G: inform number of guesses
G: call NUMBERGES ( app ) < 2 > { START

0: inform what guesses used
G: call GEGUSED ( app ) < 2 > { START } < 199.4 >

G: examine names of procedures ( invoke ) < 3 > ( ) < 2.2 >

G: examine START ( unchanged ) < 4 > { START < 14.1 >

S: setup
G: define BEGIN ( 5 ) < def > ( BEGIN )
G: tell what the game is ( 5 ) < app > { BEGIN ) < 71.5 >

S: get name function
G: define ENTERNAME ( def ) < 6 > { ENTERNAME )

G: wait and instruct ( app ) < 6 > ( ENTERNAME )

G: get name ( app ) < 6 > ( ENTERNAME ) < 270.4 >

G: test START ( error ) < 7 > ( START < 7.4 >

( I don't know what to do with SDF )

S: get name function
S: get name

G: intialize RW ( app ) < 8 > ( ENTERNANE < 61.9 >

G: test START ( error ) < 9 > { START ) < 5 >

( I don't know what to do with GHFGH )

S: get name function
S: get name

G: remove initialization ( del w / in ) < 10 > { INTERNAM )

G: use MAKE with RW ( ins w / in ) < 10 > ( ENTERNAME ) < 234.5 >

G: test START ( error ) < 11 > ( START ) < 4.4 >

( I don't know how to CHOOSENUMBER )

S: get name function
G: verify got name ( invoke ) < 12 > { ) < 22.6 >

G: examine procedures ( unchanged ) < 13 > ( START ENTERNAME ) < 19.1 >
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6

Appendix A: Key to the Problem Behavior Graphs

In the graphs, top level goals appear on the far left (G: square).

Indentations represent the formation of subgoals and the preceeding goal

immediately to the left is the superordinate goal. When a goal is

formed which is a subgoal of a goal that is not adjacent to it in the

graph, the associated superordinate goal appears (S: square). The goals

are described in as abbreviated a form as possible either in terms of

the component or, in the case of debugging, in terms of the purpose of

the change. Operators are indicated in parentheses in abbreviated form:

"def" for define, "app" for append, "ins" for insert, "del" for delete,

and so on for program space operators. When a whole instruction is not

the object of the operator, the change is indicated as "w/in" for within

("del w/in, ins w/in" usually indicates a simple replacement such as "FD

40" for "FD 60"; the abbreviation "rep" is used instead of the longer

form in example 3). Trial space operators are indicated by "invoke."

Operators that result in errors are indicated as "error." The numbers

immediately following the operator indicate the line number. The

information in brackets after the line number indicates the initiating

action. In the case of errors, the error message follows in

parenthesis. The time from the last action to the completion of the

action is given for the last set of operators for the line.

The set of examples for the first task (Figures 9 to 12)

represents states of the two problem spaces to the left and the right of

the problem behavior graphs. In order to conserve space, not all of the

programs are shown; in example 1, for instance, after the first program

space state, only the changes to the program and the instructions that

surround them are shown.

The set of examples for the second task (Figures 14 to 17) only

includes the problem behavior graphs themselves; the size of the

programs precludes including them on the same page as the graphs.
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Appendix B: Instructions for the House-Playhouse task

Write a program in LOGO which will draw a front view of a 2 story

house. The house should have a door and 2 symmetrically placed windows

on the first floor, 3 evenly spaced windows on the second floor, a gable

roof, and a chimney. At the first floor level at the front of the

house, there should be a deck with a picket-type fence around it. There

should be a set of stairs from the deck with 10 steps going off ot one

side. Next to the house there should be a play house which is an exact

replica of the house at 1/4 scale.

You should produce this drawing exactly as described. Once you

have drawn the house and the play house as described, you may add

whatever adornments to them that you wish.

You have 75 minutes to complete the drawing. You may not be able

to finish it all. Do as much of it as you can.
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Appendix C: Instructions for the High-Low task

Write a program in LOGO in the form of a game for guessing

numbers. The game is usually called "HILO". In this game, there is

only one player. The computer chooses a number randomly from between 1

and 100, and the player must guess the number.

You should write this program in the form of an interactive game.

In other words, after the computer has randomly choosen a number, the

player will enter numbers from the keyboard and the game will keep going

until the player has correctly guessed the number.

The computer should ask for the name of the player at the outset.

There should be error-checking so that only numbers between 1 and 100

will be accepted as valid input to the game. The computer should 4.nform

the player after each guess whether the number is too high or too low or

if it is the right answer. If the guess is the same as the random

number, (1) the computer should inform the player by name that he or she

has won, (2) print out the number of valid guesses it took to win, and

(3) list the guesses that were used.

There is no need to use any screen formatting instructions for the

game. You should avoid adding any more features to the game than are

specified unless you have time left over after completing all the

requirements for the task.

You have 75 minutes to complete the drawing. You may not be able

to finish it all. Do as much of it as you can. I may intervene if I

feel you are not making progress.
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